怎么判断周期函数?

2024-05-06 19:01

1. 怎么判断周期函数?

求周期,可以把一个函数式子化成f(x)=f(x+a)的这样形式,那么它的周期就是a (当然a>0)。
例如:下面为一系列的2a为周期的函数
f(x+a)=-f(x) 所以有f(x+a+a)=-f(x+a)=f(x) 就化解到 f(x)=f(x+2a)的形式了,关键是运用整体思想,去代换。
函数的周期性定义:若存在常数T,对于定义域内的任一x,使f(x)=f(x+T) 恒成立,则f(x)叫做周期函数,T叫做这个函数的一个周期。
扩展资料:
周期函数的性质:
(1)若T(≠0)是f(x)的周期,则-T也是f(x)的周期。
(2)若T(≠0)是f(x)的周期,则nT(n为任意非零整数)也是f(x)的周期。
(3)若T1与T2都是f(x)的周期,则T1±T2也是f(x)的周期。
(4)若f(x)有最小正周期T*,那么f(x)的任何正周期T一定是T*的正整数倍。
(5)若T1、T2是f(x)的两个周期,且T1/T2是无理数,则f(x)不存在最小正周期。
(6)周期函数f(x)的定义域M必定是至少一方无界的集合。

怎么判断周期函数?

2. 周期函数怎么判断周期

周期函数定理,总结一共分一下几个类型。


定理1


若f(X)是在集M上以T*为最小正周期的周期函数,则K f(X)+C(K≠0)和1/ f(X)分别是集M和集{X/ f(X) ≠0,X ∈M}上的以T*为最小正周期的周期函数。[2] 

证:

∵T*是f(X)的周期,∴对 有X±T* 且f(X+T*)= f(X),∴K f(X)+C=K f(X+T*)+C,

∴K f(X)+C也是M上以T*为周期的周期函数。

假设T* 不是Kf(X)+C的最小正周期,则必存在T’(0<T’<T*)是K f(X)+C的周期,则对T’(0<T’<T*)是K f(X)+C的周期,

有K f(X+T’)+C=K f(X) +C K[f(X+T’)- f(X)]=0,∵K≠0,∴f(X+T’)- f(X)=0,∴f(X+T’)= f(X),

∴T’是f(X)的周期,与T*是f(X)的最小正周期矛盾,∴T*也是K f(X)+C的最小正周期。

同理可证1/ f(X)是集{X/ f(X) ≠0,X }上的以T*为最小正周期的周期函数。


定理2


若f(x)是集M上以T*为最小正周期的周期函数,则f(ax+n)是集{x|ax+b∈M}上的以T*/ a为最小正周期的周期函数,(其中a、b为常数)。

证:

【先证f(ax+b)的周期】

∵T*是f(X)的周期,∴f(x±T*)=f(x),有X±T*∈M,以ax+b替换x得,f(ax±T*+b)=f(ax+b),此时ax+b∈M,提取a为公因式得,f[a(x+T*/a)+b]=f(ax+b)∴T*/a是f(ax+b)的周期。

再证是f(ax+b)的最小正周期

假设存在T’/a(0<T’<T*;)是f(ax+b)的周期,

则f(a(x+T’/a)+b)=f(ax+b),用x/a-b/a替换x,得f(x+T’)=f(x)

∴T’是f(x)的周期,但 T’<T*这与T*是f(x)的最小正周期矛盾。

∴不存在T’/a(0<T’<T*;)是f(ax+b)的周期,即f(ax+b)的最小正周期为T*/ a


定理3


设f(u)是定义在集M上的函数,u=g(x)是集M1上的周期函数,且当X∈M1时,g(x)∈M,则复合函数f(g(x))是M1上的周期函数。

证:

设T是u=g(x)的周期,则 1有(x±T)∈M1且g(x+T)=g(x) ∴f(g(x+T))=f(g(x))

∴=f(g(x))是M1上的周期函数。

例1

设=f(u)=u2是非周期函数,u= g(X)=cosx是实数集R上的周期函数,则f(g(x))=cos2x是R上的周期函数。

同理可得:⑴f(X)=Sin(cosx),⑵f(X)=Sin(tgx),⑶f(X)=Sin2x,⑷f(n)=Log2Sinx(sinx>0)也都是周期函数。

例2

f(n)=Sinn是周期函数,n=g(x)=ax+b(a≠0)是非周期函数,f(g(x))=Sin(ax+b)是周期函数(中学数学中已证)。

例3

f(n)=cosn是周期函数,n=g(x)= (非周期函数)而f(g(x))=cos 是非周期函数。

证:假设cos 是周期函数,则存在T>0使cos (k∈Z) 与定义中T是与X无关的常数矛盾,

∴cos 不是周期函数。

由例2、例3说明,若f(u)是周期函数,u= g(X)是非周期函数,这时f(g(x))可能是,也可能不是周期函数。


定理4


设f1(X)、f2(X)都是集合M上的周期函数,T1、T2分别是它们的周期,若T1/T2∈Q则它们的和差与积也是M上的周期函数,T1与T2的公倍 数为它们的周期。

证:

设 ((p·q)=1)设T=T1q=T2p则有:有(x±T)=(x±T1q)=(x±T2p)∈M,且f1(x+T) ±f2(x+T)= f1(x+T1q) ±f2(x+T2p)= f1(X)±f2(X) ∴f1(X) ±f2(X)是以T1和T2的公倍数T为周期的周期函数。同理可证:f1(X) 、f2(X)是以T为周期的周期函数。

推论 

设f1(X) 、f2(X)……fn(X) 是集M上的有限个周期函数T1、T2……Tn分别是它们的周期,若, … (或T1,T2……Tn中任意两个之比)都是有理数,则此n个函数之和、差、积也是M上的周期函数。

例1

f(X)=Sinx-2cos2x+sin4x是以2π、π、π/2的最小公倍 数2π为周期的周期函数。

例2

讨论f(X)= 的周期性

解:2tg3 是以T1= 为最小正周期的周期函数。

5tg 是以T2 为最小正周期的周期函数。

tg2 是以T3= 为最小正周期的周期函数。

又 都是有理数

∴f(X)是以T1、T2、T3最小公倍数(T1、T2、T3)= 为最小正周期的周期函数。

同理可证:

⑴f(X)=cos ;

⑵f(x)=sin2xcos2x+cos2xcos3x+cos3xsin3x。是周期函数。


定理5


设f1(x)=sin a1x,f2(x)=cosa2x,则f1(x)与f2(x)之和、差、积是周期函数的充要条件是a1/a2∈Q。

证

先证充分性:

若a1/a2∈Q,设T1、T2分别为f1(x)与f2(x)的最小正周期,则T1= 、T2= ,又 ∈Q

由定理4可得f1(x)与f2(x)之和、差、积是周期函数。

再证必要性(仅就f1(x)与f2(x)的差和积加以证明)。

⑴设sina1x-cosa2x为周期函数,则必存在常数T>0,

使sina1(x+T)-sina1x=cosa2(x+T)-cosa2x 2cos(a1x+)sin = -2sin s(a2x+) sin ⑴。

令x= 得2cos(a1x+),则 (K∈Z)。⑵

或 C∈Z⑶

又在⑴中令 2sin(a2x+)sin =-2sin =0

由⑷

由sin ⑸

由上述⑵与⑶,⑷与⑸都分别至少有一个成立。

由⑶、(5得)⑹

∴无论⑵、⑷、⑹中那一式成立都有a1/a2。

⑵设sinaxcosa2x为周期函数,则 是周期函数。


判定方法
编辑

⑴若f(X)的定义域有界,[2] 

例:f(X)=cosx(≤10)不是周期函数。

⑵根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。

例:f(X)=cosx 是非周期函数。

⑶一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。

例:证f(X)=ax+b(a≠0)是非周期函数。

证:假设f(X)=ax+b是周期函数,则存在T(≠0),使true ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。

例:证f(X)= 是非周期函数。

证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。

例:证f(X)=sinx2是非周期函数

证:若f(X)= sinx2是周期函数,则存在T(>0),使之true ,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2

T2=Lπ(L∈Z+),∴

与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。

3. 周期函数怎么判断

周期函数判断方法:
(1)判断f(x)的定义域是否有界。
例:f(x)=cosx(≤10)不是周期函数。
(2)根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。

例:f(x)=cosx^2 是非周期函数。
(3)一般用反证法证明。(若f(x)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。
例:证f(x)=ax+b(a≠0)是非周期函数。
证:假设f(x)=ax+b是周期函数,则存在T(≠0),使之成立 ,a(x+T)+b=ax+b ax+aT-ax=0,aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(x)是非周期函数。
例:证f(x)= ax+b是非周期函数。
证:假设f(x)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(x),当x=0时,f(x)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(x)与f(x+T)= f(x)矛盾,∴f(x)是非周期函数。

周期函数怎么判断

4. 怎么样判断是周期函数

周期函数的定义:对于函数y=f(x),若存在常数t≠0,使得f(x+t)
=
f(x),则函数y=
f(x)称为周期函数,t称为此函数的周期。
性质1:若t是函数y=f(x)的任意一个周期,则t的相反数(-t)也是f(x)的周期。
性质2:若t是函数f(x)的周期,则对于任意的整数n(n≠0),nt也是f(x)的周期。
性质3:若t1、t2都为函数f(x)的周期,且t1±t2≠0,则t1±t2也是f(x)的周期。
2、定义:在函数f(x)的周期的集合中,我们称其正数者为函数f(x)的正周期,称其负数者为函数f(x)的负周期。若所有正周期中存在最小的一个,则我们称之为函数f(x)的最小正周期,记作t※。
性质4:若t※为函数f(x)的最小正周期,t为函数f(x)的任意一个周期,则
z
-(非零整数)。
性质5:若函数f(x)存在最小正周期t※,且t1、t2分别为函数f(x)的任意两个周期,则
为有理数。
注意:常值函数是周期函数,但没有最小正周期

5. 如何判断函数的周期?

比如说f(x+1)=-f(3+x),求f(x)的周期。
1、做变量替换令y=x+1 ,得到 f(y)= -f(y+2);
2、再一次套用这个式子,得到f(y+2)=-f(y+4);
3、两个式子结合,得到f(y)=f(y+4),所以,周期是4。关键的地方是:凑出f(x)=f(x+T),这时候T就是周期。而上面3个步骤就是往这个方向凑。



扩展资料:
若f(x)是在数集M上以T*为最小正周期的周期函数,则K f(x)+C(K≠0)和1/ f(x)分别是集M和集{X/ f(x) ≠0,X ∈M}上的以T*为最小正周期的周期函数。
证:
∵T*是f(x)的周期,∴对 有X±T* 且f(x+T*)= f(x),∴K f(x)+C=K f(x+T*)+C,
∴K f(x)+C也是M上以T*为周期的周期函数。
若f(x)是集M上以T*为最小正周期的周期函数,则f(ax+b)是集{x|ax+b∈M}上的以T*/ a为最小正周期的周期函数,(其中a、b为常数)。

如何判断函数的周期?

6. 周期函数怎么判断

一般的函数根据定义来判断,除了三角函数外,没有给出解析式的函数是周期的函数。推知周期,常见的周期情况有f(x+T)=f(x),周期为T,f(x+a)=-f(x),周期为2a。

1、根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。

2、一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。

7. 周期函数怎么判断

 三角函数的周期根据公式:弦函数的2π/w,切函数的π/w(w为正);一般的函数根据定义来判断,除了三角函数外,没有给出解析式的函数是周期的函数。推知周期,常见的周期情况有f(x+T)=f(x),周期为T,f(x+a)=-f(x),周期为2a。
     
   周期函数的判定方法   1、根据定义讨论函数的周期性可知非零实数T在关系式f(X+T)= f(X)中是与X无关的,故讨论时可通过解关于T的方程f(X+T)- f(X)=0,若能解出与X无关的非零常数T便可断定函数f(X)是周期函数,若这样的T不存在则f(X)为非周期函数。
   例:f(X)=cosx 是非周期函数。
   2、一般用反证法证明。(若f(X)是周期函数,推出矛盾,从而得出f(X)是非周期函数)。
   例:证f(X)=ax+b(a≠0)是非周期函数。
   证:假设f(X)=ax+b是周期函数,则存在T(≠0),使true ,a(x+T)+b=ax+b ax+aT-ax=0 aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(X)是非周期函数。
   例:证f(X)= 是非周期函数。
   证:假设f(X)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(X),当x=0时,f(X)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(X)与f(x+T)= f(X)矛盾,∴f(X)是非周期函数。
   例:证f(X)=sinx2是非周期函数
   证:若f(X)= sinx2是周期函数,则存在T(>0),使之true,有sin(x+T)2=sinx2,取x=0有sinT2=sin0=0,∴T2=Kπ(K∈Z),又取X= T有sin(T+T)2=sin(T)2=sin2kπ=0,∴(+1)2
   T2=Lπ(L∈Z+),∴与3+2 是无理数矛盾,∴f(X)=sinx2是非周期函数。

周期函数怎么判断

8. 怎么判断周期函数

 判断f(x)的定义域是否有界;根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。
     
   周期函数判定方法   周期函数的判定方法分为以下几步:
   (1)判断f(x)的定义域是否有界;
   例:f(x)=cosx(≤10)不是周期函数。
   (2)根据定义讨论函数的周期性可知非零实数T在关系式f(x+T)= f(x)中是与x无关的,故讨论时可通过解关于T的方程f(x+T)- f(x)=0,若能解出与x无关的非零常数T便可断定函数f(x)是周期函数,若这样的T不存在则f(x)为非周期函数。
   例:f(x)=cosx^2 是非周期函数。
   (3)一般用反证法证明。(若f(x)是周期函数,推出矛盾,从而得出f(x)是非周期函数)。
   例:证f(x)=ax+b(a≠0)是非周期函数。
   证:假设f(x)=ax+b是周期函数,则存在T(≠0),使之成立 ,a(x+T)+b=ax+b ax+aT-ax=0,aT=0 又a≠0,∴T=0与T≠0矛盾,∴f(x)是非周期函数。
   例:证f(x)= ax+b是非周期函数。
   证:假设f(x)是周期函数,则必存在T(≠0)对 ,有(x+T)= f(x),当x=0时,f(x)=0,但x+T≠0,∴f(x+T)=1,∴f(x+T) ≠f(x)与f(x+T)= f(x)矛盾,∴f(x)是非周期函数。